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Abstract
NASA is planning missions to the vicinity of the Sun-Earth Lo point,
some involving a distributed system of telescope spacecraft, configured in

a plane about a hub. Several sets of differential equations are written for

vri
the fcrmation flight of such telescopes relative to the hub, with varving
levels of fidelity. Effects are cast as additive perturbations to the circular
restricted three-body problem, expanded in terms of the system distances,
to an accuracy of 10-20 m. These include Earth’s orbital eccentricity, lunar
motion, solar radiation pressure, and small thrusting forces. blmulatlons
velidating the expanded differential equations are presented.

INTRCDUCTION

NASA’s Goddard Space Flight Center is planning a series of missions in the vicinity of
hp aun—Ear‘tb Lo libration point. Some of these projects will involve a distributed space
vstem of telescope spacecraft acting together as a single telescope for high-r
’;d -idual telescopes will be configured in a plane

)

resolution. The
, surrounding a hub, where the telescope
plane can be aimed toward various astronomical targets of interest. Nominal missions locate

the hub in a halo orbit, at distances of hundreds of thousands of kilometers from the Lo
point. The individual telescopes are to be placed at less than one kilometer from the hub.

The present research continues the earlier work of Segerman and Zedd [1]
TaMmar
f i o4

1. In that
er, the circular restricted three-body problem was used as a basis for the derivation of
differential equations which describe the motion of a tvpical telescope spacecraft relative
to a nearby hub. Following the approach of Richardson (2}, a modified Lindstedt-Poincaré
method was used in order to develop an uncontrolled periodic solution for this relative

motion, which is a requirement for maintaining the telescope formation. The solution
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included linesr effects of the hub moticn about Lo: guadratic hub motion effects were used
to develop relationships between the telescope frequency and amplitude. In the course of
thiat analysis, a halo-type orbit of the telescope about the hub was chosen to provide pericdic
motion in the aperture plane. Comparison was made between the resulting relative motion
solution and a baseline numerical solution of the full circular restricted equations of motion.

This research furthers the earlier work by adding the increased fidelity associated with
perturbations to the circular restricted three-body problem. Each of the perturbing effects
is cast as additive perturbations to the circular restricted equations of motion. For the
purpose of this analysis, these perturbations include the ellipticity of Earth’s orbit about
Sun, the orbiting Moon, and solar radiation pressure.

In considering the effects of the elliptical restricted problern, it is noted that the various
relative motion vectors within the three-body system are ordinarily functionally dependent
upon Earth’s orbital eccentricity. To avoid this dependence, the vectors are defined relative
to reference positions of Sun, Farth. and L, along the line of syzygy. Then, the relative
equations of motion for an individual telescope are expanded in terms of the distance of the
hub from Lo as well as the distance of the telescope from the hub. These expansions are
written so as to include all terms which contribute at the 10-20 meter level or above. Explicit
linear contributions of Earth’s orbital eccentricity are retained; higher order contributions
are excluded, as being below the prescribed level of fdelity.

For the inclusion of the lunar contribution, expansions of the vector forces are formed.
here involving the small-scale distance of a telescope from the hub, as compared to the larger
scale of distances of the lunar motion within the Sun-Earth system. Again, the expansions
are truncated in a fashion consistent with the previously stated fidelity level.

Solar radiation contributions are included as well. These terms include the effects of
possible eclipses resulting from various geometric configurations of the system. This effect is
included both for completeness and with the awareness that it may be possible to actively
adjust the spacecraft attitude in order to use the solar radiation pressure as part of an
orbital control scheme.

Finallv, the equations are written to include the presence of small body-fixed thrusting
forces, which are assumed to be used as part of the orbit control.

Simulations were conducted, comparing numerical integration of the various resulting
scts of differential equations with numerical integration of the full, unexpanded differential
equations. These simulations have been used to verify the validity of the expanded equa-
tions. Some of the results of these comparisons are presented. Studies of the solution’s
sensitivity to errors in hub position knowledge are also discussed.

EQUATIONS OF MOTION

Circular Restricted Three-Body Problem

Iu the preliminary phase of this research [1), the general second order differential equations
of motion were constructed for an object near the Sun-Earth Ly libration point, using the
force model of the classical circular restricted three-body problem. In this model, Earth is
treated as being in a circular orbit about the sun, the spacecraft mass is considered to be

negligible as compared to the two primaries, and only point-mass gravitational forces are
considered.

For this system, depicted in Figure 1, the differential equations of motion for an objoct
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where

r; = vector from L9 to object 1

uy = solar Keplerian constant

u2 = terrestrial Keplerian constant (Earth + Moon)
o1 = distance from Sun to object ¢
po:; = distance from Earth-Moon barveenter to object i
x. = distance from system baryvcenter to Lo

D, = distance from system barycenter to Sun

D‘) = dlbm_ulx FlO“'

vstem barycenter to Earth-Moon barycenter

X = unit vector paraliel to Sun-Earth line of svzygy,

pointing in Sun-to-Earth direction

n = terrestrial mean motion about Sun (assumed constant).

The coordinate frame of Figure 1 is a rotating reference frame with origin O at the

svstem barvcenter. The zr-axis points along the Sun- E rth line of syzvgy and the z-axdis
is parallel to the system angular momentum: the y-axis completes the dextral coordinate
system.

Let r;, and r; denote, respectively, the vector from Lo to the hub and to a telescope.
Therefore, if r is the vector from the hub to the telescope, the differential equation of motion
for the telescope relative to the hub is
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where now. in general. the subscripts /i and ¢ refer to the hub and telescope.

Elliptical Restricted Three-Body Problem

The extension to Equation (1) is now developed for the case of the elliptical restricted three-
body problem. First. it is necessary to locate the point which is analogous to the libration
point Lo in the circular restricted problem. As would be expected, such a point exists; as
the Sun-Earth distance varies, the iocation of the point oscillates along the z-axis.

Elliptical Problem Libration Point Analog. Say that there is an elliptical analog to
the Lo point and that its position relative to the (assumed inertial) system barycenter is
given by

R, = X + 1.y + 2.2

Letting f refer to the true anomaly of Earth’s orbit about the sun, the coordinate system
has angular velocity
we = f2,

which now is considered to be varying throughout the year. Differentiating R.,
Te ~ [Ye Te = [Ye — 2[e — [ Te
Re= | ge+ fze and Re= 1| g+ fre+2fie— fye

Ze Ze

where the column vector notation is used to indicate the zyz vector components.
'The Newtonlan gravitational force per unit mass acting on an object at this point by
Sun and Earth is given by

mlze +Dy)  polze— D) 7
r1e? roe’
Y 21
Fe/?’?'L = - at 36 - —‘*Iu y;
Tle T2e¢
HiZe  HZe
L rleg 7"2@3 -
where
Tie = (Te + D1)X + Yoy + zeZ and roe = (Te ~ D)X + yeJ + 2e2,

and D and D, now refer to the time-varying locations of Sun and Earth along the line of
SYZYEY. _

Clearly, as in the circular restricted case, the 2z equation is decoupled, and admits a
solution z, = 0. If, as anticipated, the desired solution involves y. = 0, the z and y
components of the force-acceleration equation hecowe:

P )‘;21 ‘ I . {49 _
C T g+ D)2 (ze — Doy)?
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v IIe‘2~f.Te—~—(~Te2f):
e dt
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i3 thereiore constant. However. conservation of the

From the y-component equation ;
Sun-Earth two-body angunlar momentwn b per unit mass gives

D=,

where D is the varving Sun-Earth distance Dy + Dy, Of course, unlike the case of the
circular restricted problem. this distance varies throughout the vear. Substitution for f in
the y-component equation gives

(:56\2 tant
- = consiant.
D) an

Tui laber convenicute, deflive tlls coustane ln wertig of the constant ~, such that

33"

Taking the positive root, this gives the definition of v as

éxe—Dg
_,————D .

~

In the case of the Sun-Earth system, ~ is approximately 0.01007824; z, varies between
1.486 x 10% and 1.336 x 10% km throughout the course of the year.

Relative Motion Equation Derivation. Let R; denote the position vector from the
svstem baryeenter (point O) to spacecraft <. Reforring again to Figure 1,

R;,=z.%x+r;.
Differentiating,

Ri=2X+ fxcy +1;
- 7 e patd ~ iy . -~ N L e
R:={f. - Fae )X+ (2f2.+ fa.)¥ = 1.
The distance z, and its time derivatives may be written in terms of the varying Sun-
Earth distance D and its derivatives, using the following definitions of the constants ~ and
o, and the associated relationships:

LA Te= Do , & 12 Dy = pD
! D T P
Te + Dy 11
vl =l 1—p=2= Do =1(1-p)D.
y 5 p " 2= r)D.
where
=41+ Ho
Then
T, =~D + Dy . , o .
Te=(v+1-p]D, fe={v+1-p/D



This gives the acceleration vector R; as
Ri=(n+1—-p)D=ffO)x+{~=1=p)2fD = fD)y+1; (2)

Similarly, two-body relationships may be used to write D and D in terms of f and f.
Using the two-body equations of motion for the sun (could use Earth):

R;=-Dix=—-pDx
R; = —pD% — pf Dy
R; = p(f?D - Di% — p(fD +2fD)y

= 5% (two-body force)

This gives the component equations

%:p(f*D - D)= &
- L P d o
Vi-pfD+2fD) = -5 (D) =0

which yield

D-f°D=-+2 d  2fb+fD=0
f D7 an bi b

Substituting into Equation (2), the acceleration becomes

— |— ~ ~ S '
R,——L—( +1) 2-,D2!x—r,
Introducing the two-body forces,
- N R 1 Ho s
R, = L(ﬁ,’—:—l ——,ﬂw——J (T = 5Py — (3)
1 L N )DZ IDQ v ﬂlisph pg.;sz" )

Note that the explicit appearance of the time derivatives of [ has now been removed.
Next. the vectors p;; and po, may be written as

p1; = (Te + D1)X + 13 9i = (e — Do)X +1;
and

=(y+1)Dx+r; =~vDx+r;

Substituting into Equation (3),

- 25! H2 : oy M1 2 .
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In the rotating frame, r; and its time derivatives are given by
[=} H 2 o) o

Moyl [ — fy 1 [ 7 - f_'yi - ij;n - f:)xi 1
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D. To avoid
Earth. and

Again using the definitions of v and p, 7, = (v~ 1 — p)D.
Using this form of the acceleration,

Ri=(v+1-pi(~f%+fyD =¥

where
pr={~+1)Dk+r, and P9 =7DX + 15

Vectors r; and 1; take the same forms as hefore. now relative to the reference Lo location.
For the relative motion, let

r=r;-r,=R:;—Ry.

Then,

S

Ut
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Note the similar form to Equation

o

Lunar Gravitational Effects

This section discusses the lunar contribution o the telescope motion relative to the hub.
Terms corresponding to the gravitationai force of the on upon the hub a'ld telescope
spacecrait are included in the relative equations of motlon ( telescope relative to hub). The
resulting contribution is then cast as an additive perturbation to the elliptical restricted
three-body problem equations, such that when the lunar motion is ignored, the contribution
reverts to the lunar mass placed at the Earth position. The moon is treated as a point mass.

As shown in Figure 2, let p; denote the vector fmm the moon to spacecraft 1, either

eplerian Concmnt The lunar force per

I/)

the hub or a telescope, and let ;13 denote the lunar
unit mass on spacecraft 7 is then given by

‘U

s D3i ) (6)

Therefore, the contributien te the equations of motion of the telescope relative to the hub
1s
b ) / p:’,\t p')‘ r—=
Em = — i3 \ 3 g/ i
_P3t 3h

where the subscripts i and ¢ refer respectively to the hub and telescope.
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Figure 2 Coordinate Axis Definition (including Moon)

Solar Radiation Pressure Effects

The pressure from solar radiation imparts a relatively tiny force on a telescope spacecraft,.
Depending upon spacecraft design and distance from the sun, the force can perturb both
the spacecraft’s attitude and orbit. The force can also be harnessed to beneficially propel
the spacecraft. The model presented here provides the force on a spacecraft, accounting for
the force reduction when the spacecraft orbits through the terrestrial shadow.

At a distance py; from the sun, the solar flux I {the irradiance) acting on the spacecraft
is given by

L

[= ;
ampt,

where
c 1A2
L = 3.842 » 10°° watts

is the solar luminosity {total emitted radiation).
If A is the cross-sectional area of a spacecraft of mass m projected normal to the
spacecrait-Sun line, then the solar radiation force F, per unit mass acting on the spacecraft

18
CrLA 10198 x 10'7CgA

= = = - N/unit mass,
drmept, Mot

S

where ¢ is the speed of light and 0 < Cg < 2 is the parameter characteristic of the reflectivity
of the spacecraft surface facing the sun:

Cr =0 transhuicent,
Cr =1 nperfectly absorbent,

Cr =2 perfectly reflective.

For a trajectory which passes through any portion of Earth’s shadow, the full disk of
the sun will be partiallv obscured. In the vicinity of Ls, this will occur at distances normal
to the line of syzygy of approximately 13,420 km or less. In such cases, the force expression
above must be scaled by a “luminoesity reduction factor” o which ranges from zero (total

o0
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Spacecraft Thruster Effects

This section presents the incorporation of the effects of body-mounted thrusters in the
equations of motion.
First, the body-fixed acceleration components imparted by the thrusters are given as

Ty = Fp/m, @y=F,/m. 3 = F./m,

where Fz, Iy, Fr are the components of the thrust Fiyrye in the body-fixed frame: m is the
vehicle mass.

Consider an arbitrary alignment of a body-fixed coordinate frame with respect to the
rotating z, y. z frame. This body-fixed zy, v, =, coordinate frame has its origin at the
spacecraft’s mass center.

The components of thrust expressed in the body frame must be transformed into the
rotating reference frame in order to correctly incorporate these forces into the description
of the motion. This transformation is expressed as

z ] Th
yi=T|w |,
z Zh

where T is the transformation matrix formed as a combination of Euler rotations.

It is somewhat easier to visunalize the individual rotations by considering the inverse
rotation description, rotating instead from the rotating reference frame to that fixed in the
spacecraft. By first assuming the coincident alignment of both the body frame and the
rotating reference frame, the inverse transformation matrix 77! is then a combination of
Euler rotations through a set of Euler angles:

1. first, rotate angle (v + f) about the z;, axis, where f = f{t — tg)

2. second, rotate angle # about the new orientation of the y, axis

[V~)

. third. rotate angle © about new orientation of the xy axis

Combine the sequence of rotations as follows with a right-to-left ordering of the rotation
matrices as

1 0 07 {c(6) 0 —s(&) e+ f) s(¥+f) D
T =10 ¢¢) se)l 10 1 0 —s{¥+f) el +f) 0
0 —s(o) clo)] (s(6) O () 0 0 1

=17 Yo T, (00T e ~ £,

where the functions ¢ and s represent cosine and sine, respectively: the rotation matrix
T;l refers to the required Euler rofation matrix about the ¢-axis. Finally, the desired
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transformation matriz T {from the body-fixed frame to the rotating frame) 1s expressed as
1
the inverse of T7-:

T = (T = Tufw + fIT,6/T.(c).

These expressions premultiply the thrust force per unit mass acting upon the telescope
spacecraft.

Note that typical accelerations due to thrust and solar radiation pressure are several
rders of magnitude smaller than those due to terrestrial and solar gravity. It is noteworthy
that solar radiation pressure can be used for orbit control because the force from solar
radiation pressure may be comparable to that from a thruster suite.

Summary

The force equations derived above are now combined. The resulting equation models the
elliptical restricted three-body problem, incorporating lunar, solar radiation, and thrust
perturbations.

Combining the expressions of this sectinn, given by Equations (4), (6}, and (8), along
with the thrust expressions above, the differential equations of motion of the telescope are

given by:

Re=(~+1-p)(-f%+f9)D++

:—<#1 -+ u2n>rt— !-(”,’+1>-—-1—3T’V ,UZ%} Df( }ER 3B
2 CAY S ¥ L 1t P2t
— us p3; }lunar
Pie”
1.0198 x 107CrAc -
+ Ty + 1)D% + 1) SRP
mi(y = D Dx+14 35 / . )
i’y ~s(¢) 0 @)y 0 s6)] [1 0 0 1g
+ L(_w') ¢’y ol 0 1 0|0 o¢) —s(e)] Rt thruqt
Lo o 1 [=s(0) 0 cl0)] [0 «lé)  cloy
where v/ = ¢ + f. The corresponding equations for the hub are
Ry =(yv+1-p)(-f*%+ f$)D + 4
1 H2 N L T - T
= - + rp — ((v+1j— + 7 }D' }ERBB
<plh3 p2/13> : {:( ! Plhq l/?2h3
- k3 p3h3 } lunar
P3h
lOlQ\xlOl‘CtAa -
= B [y +1)D& +14]. SRP
mii{n +1)D%k + 1,113 :

Combining the relative motion expressions of this section (Equations (5) and (7)), along
with the solar radiation pressure of Equation (8) and the earlier thrust expressions. the

10
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In the MAXIAI or similar missions, there may or may not be an actual hub spacecraft
located at the aperture’s center. Regardless, it is necessary to treat the hub as a central
reference point for locating the positions of the individual telescope spacecraft. However,

L
unlike the gravitational forces present 1

lar radiation pressure effect upon a spacecraft
with actual mass and area is substantiel as compared to that upon a “phantom” hub.
Therefore, for purposes of simulating the solar radiation pressure, the hub “spacecraft” is
treated as having the same physical characteristics as the telescope. In this manner, the
hub is maintained as an adequate reference for the position of the telescope.

An example is presented in order to permit comparison of the relative contribution of
the terms to the telescope motion. The initial conditions are listed in Table 1; they were
taken from the examples discussed in the earlier phase of the research. As mentioned in
that paper. these values were selected so as to excite only the oscillatory linear modes. The
relevant physical constants are presented in Table 4 below: the computed value of D may
be found in Table 3.

Figure 3 depicts the solution to numerical integration of four different force models

. the s0

selected from the summary equation above. The models were applied to both the hub and
telescope, and the resulting state vectors were differenced in order to determine the position
of the telescope relative to the hub. In each case, the same force model was applied to both
the hub and telescope. Additionallv, the same value of the reference distance D was used
for all force models.

The solutions are displayed relative to the circular restricted model solution, which is
obtained by including the elliptical restricted model (ER3B) terms, but with Earth’s orbital
eccentricity treated as being zero: this duplicates the model discussed in the earlier research.
The other models depicted in Figure 3 represent the addition of ellipticity (ER3B), lunar,
and solar radiation {SRP) effects over 20 days. It is noted that the elliptical contribution
provides the dominant perturbation to the circular resiricted solution. In this example,
should the viewing of a scientific target be limited to no more than 10 days, the perturbation
due to the elliptical contribution is less than 1 m.

The effects of thrusters are not simulated here. due to the vast uncertainties of force
(both magnitude and direction) and duration.

11



Table 1

Example Initial Conditions

' hub telescope telescope
(state rel. (state rel. | (state rel.
to Lo) to Lo) to hub)
z{0} (km) -227.219.419 | -227,219.483 | -0.064780
y(0) (km) 0.0 0.0 0.0
z(0) (km) -250,000.000 | -249,999.974 | 0.026445
(0 (km/day) 0.0 0.0 0.0
(0) (km/day) 25.625.030 | 25.625.044 | 0.004421
( ) (km/day) 0.0 0.0 0.0
ass mikg) 500 500
F«hrust \—\‘) 0 0
sun-facing area A4 (m?) 150 150
6.0 ‘
5.0

v
=

Time (days)

[ Cire Circ+Eliip =~~~ Circ+Ellip+Lunar - ~ = Circ+Eliip+Lunar+Solar |
Figure 3
Effects of Perturbations on Relative Distance — Full Equations

EXPANDED EQUATIONS OF MOTION
Circular Restricted Three-Body Problem

In the previous research [1}, Equation (1) was expanded through terms which are linear in
the coordinates of r and no more than cubic in the coordinates of ry,.

The acceleration vector I may be written relative to a rotating coordinate system which
rotates at the constant angular rate n about the z-axis normal to the ecliptic, and with the

x direction as previously defined. This gives

[ % 2713;/ —n?y

. . , . )
r= | y+2n—ny
L

12

&




Elliptical Restricted Three-Body Problemn
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: leratiou syuations mayv be expanded as in the earlier
research. Consider the effects of various contributions to the magnitude ordering scheme.

For ordering purposes, take

p=3.04x10"5
~=1.01 x 1072
=40 x107% (r, = 600,000 km)

=32 »107° (r =0.5km).

SRR

A rough estimate mav be obtained of the contributions that the various perturbing
contributions make to the circular resiricted problem solution. Say that a perturbing term
inay be treated as modifying the linear fraguencies associated with the circular restricted
problem. and consider the square of the perturbing frequency to be roughly the magnitude
of the coefficient of r in the perturbing acceleration. (The linear periods in and out of the
zTy-plane are approximately 177.566 days and 184.002 days, respectively.) Then, after 90
days, the effects of the terms containing various powers of r and r; are given in Table 2,
with effects included of roughly 20 m and larger.

Table 2
Along-Ellipsoid Effect of Sun-Farth Perturbation on Solution (90 days)

| perturbing | effect
| term (m)
| re : 16.7
[ TTH { 289.3
{ T"fh_f 1 1185
L TTR” 47.4
Lrrpd 18.9

Retaining terms which contribute 1o approsimately 20 m, again through linear terms in
5 P ye o 3 o o
the relative motion and cubic terms in the hub position, results in the expanded/truncated
differential equations

i = Az [-r + 32%]
+ Ay [3zrp + 3zpr + (3rp, -t — 15224)K]

+ As [(3rh -r — 15z )1y + %(Thz — 52;%)r — 12—5(2xhrh r = Trzp® + zrh?)

3

j

- 3.’Eh7‘h2)

riz 5 - 2y . 3./~
+ Ag {é"rh(—xrh' =2zt Th = Tzzp®) + 5r(Tzp
2

ot

+ B(r2ry, v+ Tzr o, + T r oy - 212, 8)R]
where the constants A,, tabulated in Table 5. are given bv

" {ze+Dy)  (z.— Dy

13



Next consider the left side of the differential equation:

Ti—fy—2fy-fa 7‘
= | G fra2fi - 2y J

el

Z—-2n.y - anI —fg - Q(f - Ne)Y — (JZ - 71(;2)@
= | §+2n.d—nly | + fr+2(f—n )z - (f7=nl)y | . (10)
3 0

In this expanded form, the first vector term represents the acceleration which appears in
the circular restricted problem (n, refers to the mean motion of the circular restricted
Earth orbit). The second vector term gives the perturbation which is added by including
the elliptic restricted effects. The perturbation term is to be expanded in terms of the
eccentricity e of Earth's orbit (= 0.017). In keeping with the earlier magnitude ordering, it
is estimated that it is sufficient to retain only contributions which are at most lincar in e,
as er is approximately 8.5 m.

Say that the circular restricted problem takes D as being the reference value D. Then,
the corresponding mean motion is n. = /u/D® Now, in the elliptic restricted problem,

the mean motion is
— = = 3/2
wo JE_ ju DD
—\/{13“\, D3 a8 e

a a

If D is chosen to be the semi-major axis a, then n = ne. Alternatively, if D is taken as the
mean Sun-Earth distance a1+ ¢2/2), the linear cccentricity approximation still allows . to -
be approximated by 7.

Using two-body relationships, and linearizing in e, the time-varying f is now approxi-
mated by

h N 2
= e X Tie (%) = n.(1+ 2ecos f)

or, in terms of the mean anomaly £

-

J

Differentiating,
3 2 .
f = -2en. sinf.

Using these results in the perturbing vector of Equation {10) gives

7 ~/ \ . ) V. - A 9 . . L. s ; ) RN
[ —fy—=2(f —ney — J- - ncz)z: —zeyncTsink — deyn. cost — 4exn,.* cosd
frr2f—n)t—(fP-nlly | = 2erne sin £+ dedne cos { — deyn’ cos
0 0 '

Lunar Gravitational Effects

Consider the lunar force given above by Equation (7). It is desired that this contribution

P3: = P3p, + 1. (11)

14
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Using this formulation to perform a binomial expansion of Equation (7), using Equation {11
to substitute for py;, and expanding through linear terms in r gives

r P3n T P3p
Fr = THZI—g T 3u3 3T (12)
A3k P3R" P3hk

It is preferable to treat these terms as an additive perturbation to the equations of
the elliptical restricted three-body problem. Assume that the baseline elliptical restricted
problem contains an object with combined terresirial and lunar mass, located at the mean
Earth-Moon barycenter. Therefore, the expansion of Equation {7) should contain the lunar
contribution to this combined mass aleng with terms representing the effect of the Iunar
motion about the barycenter. Accordingly, Equation (12) mayv be rewritten as

T 3pa,T py
Fo =~ —puy ( 3 3 3
\P2h P2n” P2n” 1
1 1 P31.03n PP )
, 3k P3H 2rP2H
o (- L) waar (Bt won)
P3in° Pzh . P3h P2h

Because the vector py; was used in the ecarlier analysis. it is convenient to write ps, as

P3n = Por + Tem,;

wlere rem refers to the lunar position relative to the mean barveenter. Using a Legendre
polynomial expansion, the inverse of the magnitude of ps; is given by

b et ~ k
1 L Y‘ ('em) P (ch "Tem
= - e | T | .
,DSh 2h b—p \ 24 A PohTem

Expanding through terms linear in 74y, and substituting in Equation (13),

r 3Po9rT - Py
F"'r =~ ‘/13 ( o 2h 5 _h>
25" P2k

~ 3u3 i}‘PQh “Tem + T PopTem + T TemPop

— 5T PopPonPon  Tem/ P2n>)/ P2n°.

Examination of Equation (14) indicates that the form of the first term in F,, is identical
to the corresponding terrestrial term derived in the earlier work. The only difference is that,
here, the mass coefficient is u3 rather than po. This term represents the effect of a lunar
mass collocated with the terrestrial mass; the remainder of ¥, represents the effect of the
lunar motion about Earth. The first term may be added to the earlier work simply by
replacing us with po = w3 in the relative equations of motion for the elliptical restricted
thres-body problem.




For the second term of Equation (14). the Earth-hub position vector po,, is expanded
in a fashion similar to that of the carlier work. In the context of the elliptical restricted
problem using a reference location of Lo,

Pan = "/D)E*,I'h

where v and D are constants as previously defined. The square of the magnitude of p,; is
given by

-

.
9 =9 : Th - 21‘

_ . =~D |1+ —= ) +—],
P2k Pan * Por ] (7D> ~D

where zp, is the z-component of ry. Once again, inverse powers of pgp are formed using
binomial expansions. Expanding through linear terms in 7, and substituting, F,,, becomes

r 3PoT - e
Fm ~ — g < o Poy 5p.},h)
P2h P20

— 3usl(~2%Term + Yem + 2Zem) X + (YUTen, + TUerm )Y
)4

+ (2Tem + -T/Tem)i} /(D
— M3 |_“15I6772I/?r + 3T - Tem? — 152Tenzy,
=30 ThTem + 3(r - Yem){(—DapX +1p) + 1050z omanX

— 132Zeoph — 1527 - e X — 1340, T rhic:[ /'(A,/D)D.

Again, a rough estimate of the contributions that the various perturbing contributions
make to the solution is presented. As was done for the inclusion of the ellipticity, the
perturbing terms are treated as modifving the linear frequencies — that is, the coeflicient
of r in the perturbing acceleration. After 90 days, the effects of the dominant lunar terms,
containing various powers of the relevant variables, are given in Table 3.

Table 3
Along-Ellipsoid Effect of Lunar Perturbation on Solution (90 days)

perturbing | effect
term (m)
TTem 2.3
Py 2 0.6 1
TTHhTem 0.9 ‘

Summary

The force equations derived above are now combined, repeating the models for solar radia-
tion pressure and thrust. The resulting equation models the expanded elliptical restricted
three-body problem. incorporating lunar, solar radiation, and thrust perturbations. The
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cecrart are given by

ER3B
\
— 3us !'( 2% Tem + YYerm + 2Zem )X + (YTem + TYem )Y
+ (zTem + xzem)z‘ J(~DY*
— 431 =15TemThT + 3T - TerT — 152TernTs lunar
=30 ThTem + 3(r Tem}{—DxpX + rp) + 10502 0 zi X
— 132 % ey — 15274 - TemX — 157, - r,p";j} J(~Dy?
Ole X 10 ‘CrAc = . -
: i [(~+1)D% ~r; 4 r SRP:
JDX + 14| } SRP,
el 1o F
0 %'O cle) —s{o; -] thrust R Thrust
e8] (0 s(6) c{@)J m

where ¢ = ¥ + f.

The following example permits comparison of the relative contribution of the terms
to the telescope motion. The initial conditions are the same as those presented earlier in
Table 1. Asin Figure 3, Figure 4 presents the solution to four different force models selected
from the relative motion summary equation above. Where hub position is required, it was
obtained from separate integration of the full, unexpanded hub equations from the previous
section. using the same force model as for the relative motion.

Once again, Lhe reference solution is represented in the figure by the r-axis. This refers
to the circular restricted model case. The other models depicted in Figure 4 represent the
addition of ehxphcnv (ER3B), lunar, and solar radiation (SRP) effects over 20 days. Solar
radiation is again treated as being applied to both the telescope and to either a real or
phantom spacecraft at the hub, with the same physical characteristics as the telescope.

Y TYT LSS AV A TT DALITYIANT IS NT
SENSITIVITY TO HUDB POSITION ERROR

One area of concern to mission planners involves the limitations of accuracy in knowledge
of the Liub position. In particular, as the relative motion equations are dependent upon the
hub position, it is important to understand how sensitive the relative motion solutions are
to errors in the hub position. To address this issue, a detailed linear variational analysis
was performed, clearly demonstrating that the errors in telescope position relative to the
hub, based on knowledge of hub position to approximately 1.7 km, are sufficient]lv small
that they may be ignored.

everal sample tests of this behavior were conducted. For one test case. the initial
conditions of Table 1 were used here as a nominal set of initial conditions for the hub and

wn
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Effects of Perturbations on Relative Distance — Expanded Equations

telescope. The integration was then performed with the hub offset from its nominal initial
state by 1 km in each directional component. This was to simulate an initial error in hub
position. As seen in Figure 5, the telescope position relative to the hub differs from the
nominal case by millimeters over 40 days.
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Figure 5
Relative Motion Error Caused by 1.7 km Initial Hub Position Error

The simulation was also repeated with the initial hub position offset fraom the nomin
state by 17.3 km (10 km in each direction). The resulting relative motion error is roughly
the same as that of Figure 5, scaled by a factor of 10.
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SUMMARY AND CONCLUSION

This report details the further work describing the formation flying between spacecraft near
the Sun-Earth L» libration point, beginning with the circular restricted three-body problem
for the hub motion about Lo.

These analyses develop the elliptical restricted three-body problem from previous work
with circular problem [1]. The earlier in-depth work with the circular restricted problem
was used as a basis from which to address the following perturbations:

o elliptical orbit of Earth-Moon about Sun
e lunar gravitational effects

e solar radiation pressure effects

e thrusters on vehicle

These were incorporated as additive perturbations to the circular restricted three-body
problem with expansions of varying levels of fidelity. For use as a baseline, the equations of
motion were first developed in their full nonlinear form; then, they were expanded through
appropriately small contributions. The equations were implemented through their coding in
a MATLAB simulation. One example was presented using the earlier identification of valid
initial conditions that excite only oscillatory motion in the linear modes. The results shown
in Figures 3 and 4 demonstrate the dominant perturbation due to the elliptical motion of
Earth about the sun. In this example, the perturbations due to lunar and solar radiation
pressure are negligible. Overall, the figure indicates that during the typical 5-day science
observation of this example, these perturbations contribute less than 1 m of relative position
difference. The proposed electric propulsion should have little trouble maintaining position.

The expanded circular and elliptical portions of the full model through terms which
are linear in the coordinates of the telescope position relative to the hub and no more
than cubic in the coordinates of the hub position relative to Lo are presented above. The
derivation describes the magnitude of the various terms and why some were truncated.
Additionally, the lunar gravity model was expanded and some terins truncated due to very
small perturbations upon the motion. As before, the perturbations due to the elliptical
motion of the Earth about the Sun are dominant. Again, lunar and solar radiation pressure
effects are negligible.

This work’s uniqueness stems from its complete description of the primary perturba-
tions to the relative motion between nearby spacecraft. In the course of the analysis, the
dominance of the perturbing effect of the elliptical motion of the Earth about the sun was
identified and verified. Contributions due to lunar gravity and solar radiation pressure are
nearly negligible in the chosen examples.
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CONSTANT PARAMETERS

Table 4

PHYSICAL CONSTANTS [3]
(E-M bary. = Earth-Moon barycenter)

astronomical unit

L+ distance ratio

gravitational parameter, Sun alone

gravitational parameter, Earth alone
gravitational parameter, Earth-Moon
gravitational parameter, Moon alone

mean E-M bary. distance from Sun
eccentricity of E-M bary. orbit about Sun e 0.01670862
mean motion of E-M bary. orbit about Sun n | 0.199106385 x107° rad/s

p1 | 132,712,440,017.987 ki3 /s%

7% 398,600.4415 km?3/s?
o 403,503.236 km?/s2
U3 4,902.8003 km? /s?
AU 149,597,870.691 km

1.000001018 AU

v 0.01007824

Table 5

COMPUTED VALUES AND COEFFICIENTS

reference Sun-Earth distance
gravitational coeflicients
(see Equation (9))

D
As
Ay
As
Ag

149,618,905.218739 km
1.16556055765939 x 10™3 1/day?
5.84525170441422 x 10710 1/(km-day?)
3.86396147244215 x 1071 1/(km?-day?)
2.56240418152728 x 10722 1/(km>-day?)
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